975 resultados para Diffuse reflectance


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A non-destructive, diffuse reflectance near infrared spectroscopy (DR-NIRS)approach is considered as a potential tool for determining the component-level structural properties of articular cartilage. To this end, DR-NIRS was applied in vitro to detect structural changes, using principal component analysis as the statistical basis for characterization. The results show that this technique, particularly with first-derivative pretreatment, can distinguish normal, intact cartilage from enzymatically digested cartilage. Further, this paper establishes that the use of DR-NIRS enables the probing of the full depth of the uncalcified cartilage matrix, potentially allowing the assessment of degenerative changes in joint tissue, independent of the site of initiation of the osteoarthritic process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Near infrared spectroscopy (NIRS) combined with multivariate analysis techniques was applied to assess phenol content of European oak. NIRS data were firstly collected directly from solid heartwood surfaces: in doing so, the spectra were recorded separately from the longitudinal radial and the transverse section surfaces by diffuse reflectance. The spectral data were then pretreated by several pre-processing procedures, such as multiplicative scatter correction, first derivative, second derivative and standard normal variate. The tannin contents of sawmill collected from the longitudinal radial and transverse section surfaces were determined by quantitative extraction with water/methanol (1:4, by vol). Then, total phenol contents in tannin extracts were measured by the Folin-Ciocalteu method. The NIR data were correlated against the Folin-Ciocalteu results. Calibration models built with partial least squares regression displayed strong correlation - as expressed by high determination correlation coefficient (r2) and high ratio of performance to deviation (RPD) - between measured and predicted total phenols content, and weak calibration and prediction errors (RMSEC, RMSEP). The best calibration was provided with second derivative spectra (r2 value of 0.93 for the longitudinal radial plane and of 0.91 for the transverse section plane). This study illustrates that the NIRS technique when used in conjunction with multivariate analysis could provide reliable, quick and non-destructive assessment of European oak heartwood extractives.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We conducted a pilot study on 10 patients undergoing general surgery to test the feasibility of diffuse reflectance spectroscopy in the visible wavelength range as a noninvasive monitoring tool for blood loss during surgery. Ratios of raw diffuse reflectance at wavelength pairs were tested as a first-pass for estimating hemoglobin concentration. Ratios can be calculated easily and rapidly with limited post-processing, and so this can be considered a near real-time monitoring device. We found the best hemoglobin correlations were when ratios at isosbestic points of oxy- and deoxyhemoglobin were used, specifically 529/500 nm. Baseline subtraction improved correlations, specifically at 520/509 nm. These results demonstrate proof-of-concept for the ability of this noninvasive device to monitor hemoglobin concentration changes due to surgical blood loss. The 529/500 nm ratio also appears to account for variations in probe pressure, as determined from measurements on two volunteers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We developed a ratiometric method capable of estimating total hemoglobin concentration from optically measured diffuse reflectance spectra. The three isosbestic wavelength ratio pairs that best correlated to total hemoglobin concentration independent of saturation and scattering were 545/390, 452/390, and 529/390 nm. These wavelength pairs were selected using forward Monte Carlo simulations which were used to extract hemoglobin concentration from experimental phantom measurements. Linear regression coefficients from the simulated data were directly applied to the phantom data, by calibrating for instrument throughput using a single phantom. Phantoms with variable scattering and hemoglobin saturation were tested with two different instruments, and the average percent errors between the expected and ratiometrically-extracted hemoglobin concentration were as low as 6.3%. A correlation of r = 0.88 between hemoglobin concentration extracted using the 529/390 nm isosbestic ratio and a scalable inverse Monte Carlo model was achieved for in vivo dysplastic cervical measurements (hemoglobin concentrations have been shown to be diagnostic for the detection of cervical pre-cancer by our group). These results indicate that use of such a simple ratiometric method has the potential to be used in clinical applications where tissue hemoglobin concentrations need to be rapidly quantified in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diffuse reflectance spectroscopy with a fiber optic probe is a powerful tool for quantitative tissue characterization and disease diagnosis. Significant systematic errors can arise in the measured reflectance spectra and thus in the derived tissue physiological and morphological parameters due to real-time instrument fluctuations. We demonstrate a novel fiber optic probe with real-time, self-calibration capability that can be used for UV-visible diffuse reflectance spectroscopy in biological tissue in clinical settings. The probe is tested in a number of synthetic liquid phantoms over a wide range of tissue optical properties for significant variations in source intensity fluctuations caused by instrument warm up and day-to-day drift. While the accuracy for extraction of absorber concentrations is comparable to that achieved with the traditional calibration (with a reflectance standard), the accuracy for extraction of reduced scattering coefficients is significantly improved with the self-calibration probe compared to traditional calibration. This technology could be used to achieve instrument-independent diffuse reflectance spectroscopy in vivo and obviate the need for instrument warm up and post∕premeasurement calibration, thus saving up to an hour of precious clinical time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fully quantitative analyses of DRIFTS data are required when the surface concentrations and the specific rate constants of reaction (or desorption) of adsorbates are needed to validate microkinetic models. The relationship between the surface coverage of adsorbates and various functions derived from the signal collected by DRIFTS is discussed here. The Kubelka-Munk and pseudoabsorbance (noted here as absorbance, for the sake of brevity) transformations were considered, since those are the most commonly used functions when data collected by DRIFTS are reported. Theoretical calculations and experimental evidence based on the study of CO adsorption on Pt/SiO2 and formate species adsorbed on Pt/CeO2 showed that the absorbance (i.e., ) log 1/R������¢, with R������¢ ) relative reflectance) is the most appropriate, yet imperfect, function to give a linear representation of the adsorbate surface concentration in the examples treated here, for which the relative reflectance R������¢ is typically > 60%. When the adsorbates lead to a strong signal absorption (e.g., R������¢ < 60%), the Kubelka-Munk function is actually more appropriate. The absorbance allows a simple correction of baseline drifts, which often occur during time-resolved data collection over catalytic materials. Baseline corrections are markedly more complex in the case of the other mathematical transforms, including the function proposed by Matyshak and Krylov (Catal. Today 1995, 25, 1-87), which has been proposed as an appropriate representation of surface concentrations in DRIFTS spectroscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Co-electrolysis of carbon dioxide and steam has been shown to be an efficient way to produce syngas, however further optimisation requires detailed understanding of the complex reactions, transport processes and degradation mechanisms occurring in the solid oxide cell (SOC) during operation. Whilst electrochemical measurements are currently conducted in situ, many analytical techniques can only be used ex situ and may even be destructive to the cell (e.g. SEM imaging of microstructure). In order to fully understand and characterise co-electrolysis, in situ monitoring of the reactants, products and SOC is necessary. Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) is ideal for in situ monitoring of co-electrolysis as both gaseous and adsorbed CO and CO2 species can be detected, however it has previously not been used for this purpose. The challenges of designing an experimental rig which allows optical access alongside electrochemical measurements at high temperature and operates in a dual atmosphere are discussed. The rig developed has thus far been used for symmetric cell testing at temperatures from 450[degree]C to 600[degree]C. Under a CO atmosphere, significant changes in spectra were observed even over a simple Au|10Sc1CeSZ|Au SOC. The changes relate to a combination of CO oxidation, the water gas shift reaction and carbonate formation and decomposition processes, with the dominant process being both potential and temperature dependent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biophotonics Laboratory,Centre for Earth Science Studies

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes an analytical reflectometric method that has an objective not only the industrial quality control but also to detect possible falsifications and/or adulterations of propranolol in pharmaceutical formulations. The method is based on the diffuse reflectance measurements of the colored product (III) of the spot test reaction between propranolol hydrochloride (I) and 2,6-dichloroquinone-4-chloroimide (II) using filter paper as solid support. Spot test conditions have been investigated using experimental design in order to identify and optimize the critical factors. The factors evaluated were DCQ concentration, propranolol solvent and DCQ solvent. The best reaction conditions were achieved with the addition of 30 mu L, of propranolol solution in ethanol 35% (v/v) and 30 mu L of DCQ solution at 70 mg mL(-1) in acetone, in this order. All reflectance measurements were carried out at 500 nm and the linear range was from 8.45 x 10(-4) to 8.45 x 10(-2) mol L-1 (r= 0.998). The limit of detection was 1.01 x 10(-4) mol L-1. No interference was observed from the assessed excipients and drugs. The method was applied to determine propranolol in commercial brands of pharmaceuticals. The results obtained by the proposed method were favorably compared with those given by the British Pharmacopoeia procedure. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)